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SUMMARY

The nervous system evolved to coordinate flexible
goal-directed behaviors by integrating interoceptive
and sensory information. Hypothalamic Agrp neu-
rons are known to be crucial for feeding behavior.
Here, however, we show that these neurons also
orchestrate other complex behaviors in adult mice.
Activation of Agrp neurons in the absence of food
triggers foraging and repetitive behaviors, which
are reverted by food consumption. These stereotypic
behaviors that are triggered by Agrp neurons are
coupled with decreased anxiety. NPY5 receptor
signaling is necessary to mediate the repetitive be-
haviors after Agrp neuron activation while having mi-
nor effects on feeding. Thus, we have unmasked a
functional role for Agrp neurons in controlling repet-
itive behaviors mediated, at least in part, by neuro-
peptidergic signaling. The findings reveal a new set
of behaviors coupled to the energy homeostasis cir-
cuit and suggest potential therapeutic avenues for
diseases with stereotypic behaviors.
INTRODUCTION

Neural circuits are responsible for organizing and regulating flex-

ible goal-oriented behaviors by integrating sensory and intero-

ceptive information. The observation that mice can perform

complex dynamic computations similar to humans (Kheifets

and Gallistel, 2012) supports the view that brain mechanisms

involved in complex goal-oriented behaviors rely on phylogenet-

ically primitive neural circuits.

Homeostatic functions—for example, food intake—are adap-

tive responses that allow successful survival of the individual in

the environment. The hypothalamus is an ancient brain region

present in all vertebrates that is critical for the regulation of ho-

meostatic functions, including energy balance, sexual behavior,

sleep, and thirst. For more than 20 years, hypothalamic neurons

that produce NPY, Agrp, and GABA have been thought to be

involved in the promotion of hunger (Hahn et al., 1998; Horvath

et al., 1992; Horvath et al., 1997). Neuropeptide injections in
1222 Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc.
the brain elicit robust increases in food intake (Clark et al.,

1984; Ollmann et al., 1997; Rossi et al., 1998; Stanley et al.,

1986), and food deprivation increases the activity of these neu-

rons (Hahn et al., 1998; Liu et al., 2012; Takahashi and Cone,

2005; Yang et al., 2011). Acute (Gropp et al., 2005; Luquet

et al., 2005), but not chronic (Xu et al., 2005), ablation of Agrp

neurons leads to cessation of feeding and, ultimately, death (Lu-

quet et al., 2005). Conversely, acute activation of these neurons

induces robust feeding (Aponte et al., 2011; Krashes et al., 2011).

The neural circuits involved in the regulation of hunger by Agrp

neurons seem to involve several brain nuclei (Atasoy et al.,

2012; Betley et al., 2013; Wu et al., 2012). Agrp neurons have a

broad projection field (Broberger et al., 1998) with important

developmental characteristics as well (Dietrich et al., 2012;

Grove et al., 2001). It is, therefore, intuitive to postulate that

Agrp neurons orchestrate complex behavioral and physiological

changes that encompass hunger rather than just food intake.

This hypothesis gains momentum when neuropsychiatric condi-

tions with strong homeostatic components are considered (e.g.,

anorexia nervosa). For instance, anorexia nervosa is a state of

severe negative energy balance, in which brain circuits control-

ling feeding may be involved in the development of cognitive im-

pairments of this disorder.

Here, we tested these assumptions by performing analysis of

mouse behavior under conditions of Agrp neuron activation. Our

results uncover a fundamental role for Agrp neuron activation in

promoting repetitive/stereotypic behaviors in mice, unmasking a

previously unsuspected role for these hypothalamic neurons.
RESULTS

Hunger-Related Behaviors
We first determined the effects of food deprivation, a physiolog-

ical state of elevated Agrp neuronal activity (Hahn et al., 1998;

Takahashi and Cone, 2005), on behavior. We used software-as-

sisted characterization of mouse home-cage behaviors (Ada-

mah-Biassi et al., 2013; Jhuang et al., 2010; Kyzar et al., 2012)

to assess different aspects of the behavioral repertoire that oc-

curs during hunger (Figure 1A). We studied fed, food deprived

(FD), and food-deprived mice that were re-fed (RF). We divided

our analysis into three large groups of behaviors: (1) consumma-

tory responses represented by eating-related behaviors (e.g.,

time spent in the eating zone and chewing); (2) appetitive
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Figure 1. Home-Cage Behaviors in Food-Deprived and Re-Fed Mice

(A) Mouse behaviors in the home cage of fed (black bars), food-deprived (yellow bars), and re-fed (blue bars) mice.

(B–E) Time spent in (B) eating-related behaviors, (C) walking, (D) digging, and (E) grooming.

(F) Behaviors elicited by hunger states.

Error bars represent mean ± SEM. p values represent Holm-Sidak’s multiple comparisons test.
behaviors (forage-related behaviors, e.g., digging and walking);

and (3) displacement behaviors (e.g., grooming). As expected,

fed and FD animals did not engage in eating-related behaviors

when food was not presented in the home cage, an effect

promptly reverted in re-fed animals (Figure 1B). Food deprivation

stimulated forage-related behaviors, an effect that persisted in

the re-fed group (Figures 1C and 1D). Because our analyses

lasted for 1 hr after the introduction of food tomice, our data indi-

cate that the mechanisms involved in foraging behaviors during

food deprivation are slowly switched off by satiety and not

acutely by immediate presentation of food. Food deprivation

also exacerbated grooming behavior (Figure 1E). In such con-

ditions, grooming has been considered a displacement behav-

ior (Barnett, 1956), a substitute of consummatory eating. Re-

feeding acutely attenuated grooming (Figure 1E), reinforcing

that displacement behaviors, such as grooming, manifest

when animals lack the consummatory response. Thus, hunger

promotes foraging (appetitive), eating (consummatory), and

grooming (displacement) behaviors in mice (Figure 1F). Because

the activation of Agrp neurons promotes hunger in sated mice

(Aponte et al., 2011; Krashes et al., 2009; Krashes et al., 2011),

we next asked what aspects of the behavior repertoire promoted

by food deprivation may be induced by acute activation of the

Agrp neurons.

Acute Agrp Neuronal Activation
Agrp neurons have a broad projection field (Broberger et al.,

1998), which extends to a wide range of subcortical areas (Fig-

ure 2A). This complex connectivity indicates that Agrp neurons

have the capability to modulate a broad range of behaviors using

multiple parallel circuits. In a previous study, we showed that

Agrp neurons influence motivational states not related to

feeding—for example, responses to cocaine (Dietrich et al.,

2012). As an underlying mechanism, our data indicated that

Agrp neurons have a developmental effect on dopamine cell

function. These data reinforce the notion that animal models

with altered Agrp neuronal activity during development are not

suitable for the study of their acute role in the adult (Dietrich

et al., 2012). Here, to examine the acute effects of Agrp neurons

on adult animal behavior, we utilized animal models that allowed

activation of Agrp neurons in a rapid, reliable, and reproducible

manner.
Several techniques have been developed to acutely mani-

pulate neuronal function in vivo. Optogenetics (Aponte et al.,

2011) and chemical genetics using designer receptors exclu-

sively activated by designer drugs (DREADDs) (Krashes et al.,

2011) have been used to study the effects of Agrp neuron activity

on the feeding behavior of adult mice. Optogenetics provide

good time resolution with early onset of feeding behavior (Aponte

et al., 2011); however, it requires the insertion of a light source

deep into the brain, which adds a bias when analyzing complex

behaviors. On the other hand, DREADD can be used to activate

Agrp neurons by peripherally injecting receptor-ligand with

robust induction of food intake (Krashes et al., 2011) but with

more coarse kinetics (Rogan and Roth, 2011). We used trans-

genic mice that conditionally express Trpv1 in Cre-expressing

cells (Arenkiel et al., 2008; Güler et al., 2012) (R26-LSL-Trpv1;

Figure 2B) to selectively introduce Trpv1 in Agrp neurons. By

backcrossing these mice (R26-LSL-Trpv1) to a Trpv1 knockout

background and then to Agrp-Cre mice, we generated animals

that express Trpv1 exclusively in the Agrp neurons (hereafter,

Agrp-Trpv1 mice; Figures 2B and S1). We performed a series of

control experiments to confirm that expression of Trpv1 was

restricted to Agrp neurons in the arcuate nucleus and not in off-

target cells (Figure S1 and Experimental Procedures). Trpv1 is a

cation channel that is activated by the exogenous agonist capsa-

icin (Caterina et al., 1997) in a rapid and reversible manner (Güler

et al., 2012). Slice whole-cell recordings showed that capsaicin

increased the firing rate of Agrp neurons (Figure 2C). The analysis

of c-fos expression in Agrp neurons after capsaicin injection (i.p.)

in Agrp-Trpv1 mice revealed that most Agrp neurons throughout

the arcuate nucleus were activated in these transgenic mice (Fig-

ure 2C). Capsaicin injection of Agrp-Trpv1 mice led to increased

food intake in both female (Figure 2D) and male mice (Figure 2E

and Movie S1). Notably, the amount of food consumed by the

activation of Agrp neurons in our studieswas of similarmagnitude

as that observed when these cells were activated by optoge-

netics or DREADDs (Aponte et al., 2011; Krashes et al., 2011).

The latency to eat in Agrp-Trvp1 mice was faster (mean =

110.1 s [95% CI = 95.5–124.6], n = 15 mice) compared to these

other techniques (Aponte et al., 2011; Krashes et al., 2011) (Fig-

ures 2F and 2G). Thus, this animal model enabled us to rapidly

and reliably activate Agrp neurons by peripheral injection of

capsaicin and explore their role on behaviors.
Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc. 1223



Figure 2. Trpv1 Channels in Agrp Neurons Allow Acute Control of Neuronal Activity

(A) Main projection from Agrp neurons.

(B) Reporter Trpv1 mice and CFP staining in the arcuate nucleus of Agrp-Trvp1 mice.

(C) Whole-cell recording of an Agrp-Trpv1 neuron and c-fos staining in Agrp-Trpv1-HA reporter mice 60 min after capsaicin injection (10 mg.kg, i.p.).

(D and E) Food intake in (D) female Agrp-Trpv1 and in (E) male mice.

(F) Latency to eat in female Agrp-Trpv1 mice.

(G) Correlation between latency and food intake.

Error bars represent mean ± SEM. Scale bars, 50 mm. See also Figure S1 and Movie S1.
Repertoire of Home-Cage Behaviors
To screen for broad changes in behavior after Agrp neuron acti-

vation, we investigated changes in home-cage behaviors in the

presence or absence of food in satedmice (Figure 3). In the pres-

ence of food, activation of Agrp neurons did not statistically

change ambulatory activity (Figure 3A), while it evoked feeding

in all Agrp-Trvp1 mice tested. Conversely, when food was

removed, Agrp neuron activation increased activity levels (Fig-

ure 3B). To dissect these behavioral changes, we characterized

mouse behaviors in their home cages upon activation of the Agrp

neurons, similarly to what we did in FDmice (Figure 1). These ex-

periments were performed in sated mice provided with food or

with an empty food container. In all Agrp-Trpv1 mice tested in

this paradigm, when food was present in their home cage, injec-

tion of capsaicin evoked robust food intake (data not shown). As

expected, consummatory aspects of feeding, as measured by

eating-related behaviors, were greatly enhanced by Agrp neuron

activation (Figure 3C). Interestingly, activation of Agrp neurons in

sated mice in the absence of food also led to increases in eating-

related behaviors (e.g., interaction with the empty food container

and chew bedding material; Figure 3C). The persistence of these

behaviors indicates a degree of repetitiveness and stereotypy in

the behavior repertoire of Agrp neuron activated animals in the

absence of food.

Forage-related behaviors were increased in Agrp-neuron-acti-

vated mice in the absence of food, an effect that was almost

completely reverted in the presence of food (Figures 3D and

3E). Grooming also increased after treatment of Agrp-Trpv1

mice with capsaicin in the absence of food but decreased when
1224 Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc.
animals were provided food (Figure 3F). Grooming is considered

a displacement behavior to attenuate the appetitive response

(forage) in the absence of the stimulus (food). When manifested

in excess, grooming has also been related to obsessive-compul-

sive behaviors inmice (Ahmari et al., 2013; Burguière et al., 2013),

similar to digging (Karvat and Kimchi, 2012). Thus, our findings

indicate that, in addition to appetitive and consummatory aspects

of hunger, the activation of Agrp neurons in Agrp-Trpv1 mice is

sufficient to drive repetitive/stereotypic behaviors, an unsus-

pected role for these hypothalamic neurons. To corroborate these

findings, we expressed hM3Dq in Agrp neurons by injecting

Agrp-Cre mice with a recombinant AAV vector carrying a cre-

dependent coding sequence (rAAV-FLEX- hM3Dq-mCherry).

The activation of Agrp neurons by peripheral injection of the re-

ceptor ligand, clozapine-N-oxide (CNO, 0.3 mg/kg, i.p), led to

similar results as observed in Agrp-Trpv1 mice injected with

capsaicin (Figure S2) but with a delayed response, consistent

with the slow effect of hM3Dq in stimulating neuronal activity

(Krashes et al., 2011; Rogan and Roth, 2011). Altogether, we

conclude that activation of the Agrp neurons resembles many,

but not all, aspects of food deprivation. Our findings place inter-

oceptive regions of themammalian brain, such as the arcuate nu-

cleus of the hypothalamus, as crucial mediators of repetitive and

stereotypic behaviors (Figures 3C and 3F). Thus, we set out to

investigate these behavioral responses in greater detail.

Agrp Neurons Trigger Repetitive Behaviors
To further evaluate the extent to which the activation of Agrp

neurons can engage mice in repetitive behaviors, we tested



Figure 3. Home-Cage Behavior Analysis of Agrp Neuronal Activated Mice

(A) Activity in the home cage with food provided.

(B) Activity with no food provided.

(C) Eat-related behaviors.

(D) Time walking.

(E) Time digging.

(F) Time grooming.

Symbols and bars represent mean ± SEM. Statistical data derived from two-way ANOVA and Holm-Sidak’s multiple comparisons test. See also Figure S2.
Agrp-Trpv1 mice in the marble-burying test (Deacon, 2006;

Gyertyán, 1995; Witkin, 2008). The activation of Agrp neurons

led to a robust increase in the number ofmarbles buried bymales

(Figure 4A andMovies S2 and S3) and females (data not shown),

an effect that was, at least, in the same order of magnitude as

mouse models of obsessive-compulsive disorders (Amodeo

et al., 2012). Because food deprivation increases digging and

grooming in the absence of food (Figure 1), which can also be

considered repetitive behaviors (Ahmari et al., 2013; Burguière

et al., 2013; Karvat and Kimchi, 2012), we tested food-deprived

mice in parallel to Agrp-neuron-activated mice in the marble-

burying test. We did not find statistical differences in the number

of marbles buried after food deprivation (Figure 4B). To further

test whether the increase in marble-burying behavior was

due to repetitiveness, we performed a modified marble-burying

test. We assessed mice in a larger cage with 40 marbles, which

decreases the overall number of marbles buried and increases

exploratory behavior. We found similar data in this modified

version of the marble-burying test, with activation of Agrp neu-

rons increasing the number of marbles buried (Figure 4C) while

decreasing total activity during the test (control = 42.96 ±

3.12 m [n = 14], Agrp-Trpv1 = 32.27 ± 2.05 m [n = 20, mean ±

SEM]; p = 0.004, two-tailed Mann-Whitney test), likely due to

the extended time that mice spent burying marbles rather than
exploring the arena. To test whether chronic negative energy

balance impacts Agrp neuron activation responses, we placed

animals on a 20% calorie-restricted regimen for 4 weeks and

then tested them. Similar to the ad libitum fed animals (Figure 4),

the activation of Agrp neurons by capsaicin increased marble-

burying behavior in calorie-restricted mice (Figure S3). These re-

sults, together with the data gained in sated mice, argue for the

importance of Agrp neuronal activity rather than metabolic state

per se as a controller of stereotypic behaviors.

To further investigate whether the increase in marble burying

was due to a goal-oriented repetitive behavior (to bury marbles)

(Gyertyán, 1995; Londei et al., 1998; Thomas et al., 2009), we

performed a place preference test (Figure 4D). Marbles were

distributed on only one side of the cage, and bedding was pre-

sent on both sides. Agrp-Trvp1 mice that received capsaicin

buried a much larger number of marbles (Figure 4D) and spent

�16% more time on the marble side of the chamber (Figure 4E)

than control mice. Notably, even with only half of the cage

covered with marbles (Figure 4D), the number of marbles buried

did not differ from the previous experiment (Figure 4C) in Agrp-

Trpv1 mice injected with capsaicin )full cage = 41.25% ±

4.55% [n = 20]; half cage = 33.00% ± 5.45% [n = 20, mean ±

SEM]; p = 0.183, two-tailed Mann-Whitney test) but decreased

in the control group (full cage = 20.89% ± 5.25% [n = 14]; half
Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc. 1225



Figure 4. Repetitive Behaviors after Agrp Neuron Activation

(A) Marbles buried after Agrp neuron activation.

(B) Marble buried in fed, food-deprived (FD), control, and Agrp-neuron-activated mice.

(C) Marble buried in the modified marble-burying test.

(D) Marble buried in the modified place-preference test.

(E) Time animals spent in the marble side relative to control animals.

(F) Normal distribution fitted to pooled experimental data (delta marbles buried [capsaicin injection – baseline]). p value was calculated using unpaired t test with

Welch’s correction.

(G) Linear regression analysis correlating marble-burying behavior and food intake. Each data point represents one mouse. Female mice were used in this study.

Error bars represent mean ± SEM, and p values were calculated using t test. See also Figure S3 and Movies S2 and S3.
cage = 6.78% ± 2.80% [n = 14, mean ± SEM]; p = 0.01, two-

tailed Mann-Whitney test], indicating that the activation of Agrp

neurons directs the animal’s behavior toward repetitive, stereo-

typic responses when food is not available.

We hypothesized that, if Agrp neuron-mediated feeding and

repetitive behaviors are a result of the same brain circuit, then

these two behaviors should be correlated. We took advantage

of the marble-burying behavior to test repetitive responses in

mice. Frequency distribution histograms show a shift to the right

in the number of marbles buried in Agrp-neuron-activated mice

(Figure 4F), highlighting the idea that these behavioral changes

are variable and affect differently subpopulations of mice. Linear

regression analysis of individual responses did not show a cor-

relation between marble-burying and feeding behaviors (Fig-

ure 4G), suggesting that the brain circuits that drive these behav-

iors by Agrp neurons are distinct and not completely overlapping.

Agrp Neuron Activation Decreases Anxiety
It is possible that changes in repetitive and stereotypic behaviors

observed after Agrp neuron activation are due to increased anx-

iety. It is expected that treatments that increase anxiety levels

will also increase repetitive/stereotypic responses in mice. Hun-

ger is an unpleasant physiological state. Thus, it is possible that

the promotion of hunger by activation of Agrp neurons generates
1226 Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc.
an anxiogenic state in mice that leads to repetitive behaviors, as

described above. To test anxiety-related behaviors, we per-

formed a series of tests. First, we placed mice in a novel open-

field exploratory test following activation of Agrp neurons by

capsaicin. We did not find significant changes in total activity

(Figure 5A) or time that animals explored the center of the arena

(data not shown). We then put mice in a two-stage open-field

test, in which a novel object is added to the center of the arena

to induce novelty exploration and anxiety (Dietrich et al., 2012).

In this test, activation of Agrp neurons increased the time that an-

imals spent exploring the object (Figures 5B and 5D), but not to-

tal activity (Figure 5C). This indicates a decrease in anxiety levels

compared to control mice. Next, we assessed mice in the zero-

and plus-maze apparatuses, in which anxiety-related behaviors

inversely correlate with the time that animals spend in the open

arms. In both tests, we did not observe significant changes in

activity levels between groups (Figures 5E and S4 and Movies

S4 and S5), but we found that the activation of Agrp neurons

increased the time in the open arms (Figures 5F and S4). Intrigu-

ingly, Agrp-neuron-activated mice accelerated once in the open

arms (Figures 5G-H), perhaps due to changes in risk assess-

ment. This hypothesis needs further investigation. Overall, the

data show that activation of Agrp neurons in mice leads to repet-

itive behaviors that are not due to increases in anxiety levels.



Figure 5. Activation of Agrp Neurons Decreases Anxiety-Related Behaviors

(A) Activity in the open field. Data points represent mean ± SEM.

(B) Two-stage open-field test.

(C) Total distance traveled in the two-stage open-field test.

(D) Time spent in the center of the open field.

(E) Distance traveled by mice in the plus-maze test.

(F) Time animals spent in the open arms.

(G) Average speed of mice in the close arms (CA) and open arms (OA) of the apparatus.

(H) Representative tracking data.

See also Figure S4 andMovies S4 and S5. Box and whiskers represent median ±min/max values. p valueswere calculated using two-way ANOVAwith repeated-

measures followed by Holm-Sidak’s multiple comparisons test.
Conversely, the activation of Agrp neurons is anxiolytic in several

behavior tests.

Alleviation of Behaviors by Y5 Receptor Antagonist
Agrp neurons have been shown to induce voracious food intake

after acute activation due to NPY and GABA release (Aponte

et al., 2011; Krashes et al., 2013). Because animal models in

which GABA and/or NPY signaling is removed from Agrp neu-

rons have developmental consequences (Atasoy et al., 2012;

Dietrich et al., 2012), we examined whether pharmacological

blockage of these signaling pathways would prevent repetitive

behaviors after Agrp neuron activation. Systemic injection of a

GABAA receptor antagonist was unable to reverse the induction

of marble-burying behavior (Figure 6A) and food intake (Fig-

ure 6B) in Agrp-Trpv1 mice injected with capsaicin. NPY from

the arcuate nucleus seems to signal mostly through NPY1 and

NPY5 receptors, with overlapping expression and function

(Atasoy et al., 2012; Gerald et al., 1996; Kanatani et al., 2000; Pe-

drazzini et al., 1998; Wolak et al., 2003). We have shown an

anatomical link between the lateral hypothalamic orexin/hypo-

cretin neurons and the arcuate nucleus NPY/Agrp cells (Horvath
et al., 1999). Neuropeptides released by orexin/hypocretin neu-

rons promote feeding, an effect that we showed to be diminished

by administration of a NPY5 receptor antagonist (Dube et al.,

2000). These previous observations together with the translat-

ability of NPY5 receptor antagonists (Erondu et al., 2006) led us

to interrogate the role of NPY5 receptor signaling in behavioral

changes mediated by Agrp neuron activation. Systemic injection

of a NPY5 receptor antagonist before activation of Agrp neurons

was sufficient to block the increase in marble-burying behavior

(Figure 6D) while slightly decreasing food intake (Figure 6E).

Neither GABAA receptor nor NPY5 receptor antagonists altered

locomotor activity in an open field at the maximum dose used

in this study (Figures 6C and 6F). These results indicate that

NPY5 receptor signaling is necessary for the repetitive behaviors

induced by the activation of Agrp neurons. To further evaluate

the participation of NPY5 receptor signaling in the behavior

repertoire of mice after Agrp neuronal activation, we scrutinized

mouse behavior in the home cage. We treated mice with the

NPY5 receptor blocker before activating Agrp neurons by capsa-

icin in Agrp-Trpv1 mice (Figure 7A). While activation of Agrp neu-

rons increased eating-related (Figure 7B) and foraging-related
Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc. 1227



Figure 6. Effects of GABAA or NPY5 Recep-

tors Blockade in Agrp-Neuron-Activated

Mice

(A) Effect of the GABAA receptor blocker, bicu-

culline, in the marble-burying test after activation

of Agrp neurons.

(B) Effect of bicuculline on food intake.

(C) Effect of bicuculline on locomotor activity.

(D) Similar to A but using the NPY5 receptor

antagonist (CGP71683 hydrochloride).

(E) Similar to B using CGP71683.

(F) Similar to C using CGP71683.

Error bars represent mean ± SEM. p values were

calculated using one-way ANOVA in A and D and

two-way ANOVA with repeated-measures in B, C,

E, and F followed by Holm-Sidak’s multiple com-

parisons test.
behaviors (Figures 7C–7E), blockage of NPY5 receptor signaling

attenuated all of these behavioral responses with no effects in

control mice (Figures 7B–7E). Remarkably, the effects of Agrp

neuron activation on grooming were completely reverted by

systemic injection of NPY5 receptor blocker (Figures 7F–7H),

similar to the effects reported in the marble-burying experiment

(Figure 6D). Thus, we found that activation of Agrp neurons

leads to repetitive behaviors, a behavioral phenotype that is

completely reverted by NPY5 receptor blockade. Notably, treat-

ment of control mice with a NPY5 receptor antagonist did not

significantly alter baseline behaviors, but only behaviors driven

by Agrp neuron activation. Because feeding response is not fully

reverted by blocking NPY5 receptor signaling (Figure 6E) and

because repetitive and feeding responses are not correlated be-

haviors (Figure 4G), our data provide further support for the idea

that different Agrp neuronal subpopulations promote food intake

versus repetitive/stereotypic behaviors (Figure S5).

DISCUSSION

The hypothalamus integrates hormonal and ascending neural in-

puts that bring information from the periphery (Chaudhri et al.,

2006; Coll et al., 2007; Dietrich and Horvath, 2009; Lam et al.,

2005). Our findings highlight the importance of Agrp neurons in

mediating the effect of the peripheral environment on complex

brain functions and behaviors. Our results identified the hypotha-

lamic Agrp neurons as initiators of stereotypic behaviors in mice.

These behaviors were triggered when the vast majority of Agrp

neurons were simultaneously activated. Some aspects of the
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stereotypic behaviors induced by chemi-

cal genetic activation of Agrp neurons

were not seen in food-deprived animals

or calorie-restricted mice. These obser-

vations suggest that different subpopula-

tions of Agrp neurons subserve different

functions, and it is likely that their activity

patterns are not synchronized and are un-

der differential input control. The fact that

some behavioral shifts induced by Agrp

neuronal activation can while others
cannot be suppressed by a NPY5 receptor blocker further argue

for the segregation of function of different subpopulations of

Agrp cells. Thus, it is anticipated that an intricate and highly com-

plex input organization and efferent connectivity of various sub-

populations of Agrp neurons exists to support predictable and

dynamic behavioral and autonomic adaptations to the changing

environment (Figure S5).

Our results unmasked a previously unsuspected role for the

hypothalamic hunger-promoting neurons in controlling repeti-

tive, stereotypic behaviors in mice. Also, we showed that the

activation of Agrp neurons decreases anxiety levels in several

tests in mice. Because the hypothalamus is an evolutionarily

conserved brain region, it is likely that these results are relevant

to higher-order organisms, including humans. A recent report re-

inforces this view by providing evidence that mice are capable of

estimating probabilities and calculating risks to make behavioral

adjustments in dynamic environments analogous to humans

(Kheifets and Gallistel, 2012). This supports the argument that

brain mechanisms involved in complex behaviors are phyloge-

netically preserved. It is relevant to note, however, that our

behavior tests were performed in animals in isolation, and not

in a social context. It will be important to study whether these

neurons also participate in social behaviors. Additionally, it re-

mains to be tested whether the role of Agrp neurons in feeding

and/or repetitive/stereotypic behaviors are influenced by the so-

cial context. At present, these studies are extremely challenging

to perform inmice (Anderson and Perona, 2014). With the advent

of technology and emerging tools to analyze animal behavior,

future studies dissecting the role of Agrp neurons (as well as



Figure 7. NPY5 Receptor Signaling Is Necessary for Agrp-Neuron-Mediated Behaviors

(A) Protocol to record home-cage behaviors using CGP71683 (30 mg/kg, i.p).

(B) Time spent in eating-related behaviors.

(C) Time spent walking.

(D) Total traveled distance.

(E) Time spent digging.

(F) Raster plots showing grooming behavior in individual mouse.

(G) Time spent grooming.

(H) Grooming bouts.

Error bars represent mean ± SEM. p values were calculated using two-way ANOVA followed by Holm-Sidak’s multiple comparisons test and are reported in the

panels. See also Figure S5.
other brain circuits) on behaviors in social settings are of utmost

relevance and priority for our understanding of brain function.

Our data also suggest that these ancient brain regions play a

role in psychiatric conditions. Specifically, misalignments be-

tween environmental cues (peripheral tissue function) and hypo-

thalamic circuits may lead to maladaptive behaviors, including

those associated with psychiatric and neurological disorders.

Regarding the latter, we suggest that our results have implica-

tions for the etiology of anorexia nervosa. Patients suffering

from this condition avoid ingesting calories despite the fact

that they have elevated activity and a higher physiological state

of hunger.

Because hunger signals activate Agrp neurons (Hahn et al.,

1998; Liu et al., 2012; Takahashi and Cone, 2005; Yang et al.,

2011), we postulate that, in individuals with a vulnerability to

develop anorexia nervosa, Agrp neurons may respond to nega-

tive energy balance cues in an exacerbated manner and lead to

repetitive and compulsive behaviors (Halmi et al., 2003; Matsu-

naga et al., 1999; Thiel et al., 1995). Future studies are needed

to interrogate whether inert differences in Agrp neuronal excit-
ability exist between vulnerable and invulnerable individuals.

From this perspective, it is of interest to note that patients with

anorexia nervosa have elevated circulating blood levels of Agrp

compared to controls (Merle et al., 2011; Moriya et al., 2006)

and that Agrp levels are associatedwith cognitive rigidity in these

patients (Sarrar et al., 2011). BecauseNPY5 receptor antagonists

have been tested in humans (Erondu et al., 2006) and we found it

to reversemany Agrp activation-triggered stereotypic behaviors,

we suggest that human clinical trials with safe compounds can

be initiated for addressing the behavioral aspects of anorexia

nervosa as well as other neuropsychiatric diseases with both ho-

meostatic and behavioral components.

EXPERIMENTAL PROCEDURES

Mice

All mice used in the experiments were 2–6 months old from both genders. We

did not observe differences in the responses of males and females to capsa-

icin. Agrp-Trpv1 mice were: AgrpCreTm/+::Trpv1—/—::R26-LSL-Trpv1Gt/+; con-

trol animals were either Agrp-Trpv1 mice injected with vehicle (3.3% Tween 80

in saline) or Trpv1—/—:R26-LSL-Trpv1Gt/+ mice injected with capsaicin. All
Cell 160, 1222–1232, March 12, 2015 ª2015 Elsevier Inc. 1229



animals were littermates (Agrp neuron activated and controls) in the experi-

ments. We did not observe any differences between the two control groups,

and therefore, throughout the manuscript we referred to them as ‘‘controls.’’

The following mouse lines were used in this study: Agrptm1(cre)Lowl/J,

Gt(ROSA)26Sortm1(Trpv1,ECFP)Mde/J, Trpv1tm1Jul/J, Rpl22tm1.1Psam/J,

Tg(Npy-MAPT/Sapphire)1Rck/J. All animals were kept in temperature- and

humidity-controlled rooms, in a 12/12 hr light/dark cycle, with lights on from

7:00 AM–7:00 PM. Food and water were provided ad libitum unless otherwise

stated. All procedures were approved by IACUC (Yale University).

Immunohistochemistry

Mice were deeply anesthetized and perfused with 0.9% saline containing hep-

arin followed by freshly prepared fixative (paraformaldehyde 4%, picric acid

15%, in PB 0.1M [pH = 7.4]). Brains were post-fixed overnight in fixative. Cor-

onal brain sections (50 mm) were washed several times in PB 0.1M (pH = 7.4)

and pre-incubated with Triton X-100 for 30 min. Sections were then washed

several times and blocked with 2% normal goat serum and incubated with

chicken anti-GFP (1:8,000, 4�C, 48 hr; ABCAM), rabbit anti-cfos (1:20,000 at

4�C for 48 hr; Oncogene), and/or mouse anti-HA (1:1,000 dilution at RT for

24 hr; Covance). After, sections were extensively washed and incubated

with secondary fluorescent Alexa antibodies (1:500). Sections were mounted,

coverslipped, and visualized by a Zeiss microscope or an Olympus Confocal

microscope.

Drugs

Drugs used were: capsaicin (3.33% Tween-80 in PBS; from Sigma), Bicucul-

line methiodide (in saline; from Sigma), and CGP71683 hydrochloride (in 5%

DMSO, 5% Tween-80 in water; from Tocris). All drugs were injected in a vol-

ume of 10 ml/kg of body weight intraperitoneally (i.p.).

Food Intake

For the capsaicin dose-response experiment, mice were acclimated to meta-

bolic chambers (TSE Systems) before recordings. Mice received vehicle or

capsaicin (3, 10, and 30 mg/kg, i.p.), and food intake was automatically re-

corded (see Movie S1). Alternatively, food intake was manually recorded in

single-housed mice. Bedding was changed 24 hr before the experiment,

and animals were acclimated for at least 1 week with a minimum quantity of

food in the cage to alleviate spillage. On the day of the experiments, food

was removed 1 hr before the test and food intake was recorded before and

1 hr after capsaicin injection.

Electrophysiology

Four-week-old Agrp-Cretm/+::Trpv1—/—::R26-LSL-Trpv1Gt/+::NpyGFPTg/+

mice were killed at the beginning of the light cycle, and the arcuate nucleus

was sliced into 250 mm slices, containing GFP cells. After stabilization in

ACSF, slices were transferred to the recording chamber and perfused with

ACSF. Basal firing rate was recorded for at least 5min. The slice was then incu-

bated with a pulse of capsaicin (0.25 mM), followed by a washout. Whole-cell

current-clamp recording was performed using low-resistance (3–4 MU)

pipettes. The composition of the pipette solutionwas as follows (inmM): K-glu-

conate125, MgCl2 2, HEPES 10, EGTA 1.1, Mg-ATP 4, and Na2-phosphocrea-

tin 10, Na2-GTP 0.5 (pH 7.3) with KOH. The composition of the bath solution

was as follows (in mM): NaCl 124, KCl 3, CaCl2 2, MgCl2 2, NaH2PO4 1.23,

glucose 2.5, sucrose 7.5, NaHCO3 26. After a gigaohm (GU) seal and whole-

cell access were achieved, membrane potential and action potentials were

recorded under current clamp at 0 pA. All data were sampled at 3–10 kHz

and filtered at 1–3 kHz. Electrophysiological data were analyzed with Axo-

graph 4.9.

Home-Cage Behavior

Four-month-old Agrp-Trpv1 or control female mice were singly housed in their

normal home cage 11 days prior to the start of the first behavioral study. Ani-

mals were acclimated to handling for 1 week before experiments. The day pre-

ceding the behavioral analysis, the mice were given fresh bedding. For a 1 hr

acclimation period, cages were placed in front of the cameras of the HomeCa-

geScan system (CleverSys, Reston, VA) and were backlit by IR light panels.

Mice were injected with either 10 mg/kg capsaicin or vehicle and recorded
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for 1 hr. Food was removed for the acclimation period as well as the analysis

period for groups reported as ‘‘no food.’’ Mice in the fasted study were fasted

for 16 hr prior to the experiment, and the re-fed group was given food at the

time of injection. The NPY5 receptor blocker (CGP71683 hydrochloride,

30 mg/kg, i.p.) was given to the animals 30 min prior to capsaicin injection.

Videos were analyzed with the HomeCageScan software (v3.00).

Marble-Burying Test

Marble-burying test was as described (Deacon, 2006) withmodifications. Mice

were tested (baseline) and randomized to groups. Capsaicin (10 mg/kg, i.p.)

was injected immediately before test. Drugs were injected 20 (for bicuculline)

or 30 min (for CGP71683 hydrochloride) before capsaicin. Modified marble-

burying test was performed in a rat cage containing 40 evenly distributed mar-

bles. Place preference was performed in the same rat cage divided using a

separator with an open door. Marble side contained 20 marbles. All studies

were performed in cages containing 5 cm of corn-based animal bedding.

Calorie Restriction

Femalemice (9weeks old) were housed two-by-two to avoid chronic stress due

to social isolation. We have used the balanced NIH-41 diet (3.34 kcal/g, protein

16.9%, fat 12.5%, fiber 3.8%, nitrogen-free extract 53.6%, vitamins, minerals)

to avoid malnourishment during calorie restriction due to insufficient nutrient

levels. Mice received 20% less calories than their ad libitum food intake base-

line measurements. The marble-burying test was performed on the last days of

the study (a baseline was recorded without injection, and on the next day mice

were tested after capsaicin injection). We used the modified marble-burying

test with a rat cage containing 40 marbles (as described above).

DREADD Experiment

Recombinant rAAV5-Ef1a-DIO-hm3D(Gq)-mcherry virus (500 nl from UNC

Viral Core) was injected bilaterally into the arcuate nucleus of Agrp-Cre male

mice (AP = 1.40 mm; DV = �5.90 mm; L = ± 0.30 mm). Animals were allowed

to recover for 3 weeks. All mice were singly housed in their normal home cage

3 weeks prior to the start of the first home-cage behavioral study. Two days

preceding the behavioral analysis, the mice were given fresh bedding.

Home-cage behaviors were analyzed as above. Mice were injected (i.p.)

with either 0.3 mg/kg CNO (n = 7) or saline (n = 4) and recorded during 2 hr

with no food available. Mice were later tested for feeding response and

showed robust induction of food intake after CNO injection (data not shown).

Infection was confirmed by visualizing mCherry in the arcuate nucleus. Cloza-

pine N-oxide (CNO) was from Enzo Life Science.

Locomotor Activity

Mice were allowed to explore a novel environment (a rat cage, 45 3 24 3

20 cm) for 120 min after capsaicin injection. To test the side effects of the re-

ceptor blockers in locomotor activity, animals received an injection of bicucul-

line methiodide (10 mg/kg, i.p) or vehicle (PBS) 20 min before experiment.

CGP71683 hydrochloride (30 mg/kg, i.p) or vehicle (5% DMSO, 5% tween-

80 in water) were injected 30 min prior to the experiment. Male mice were

used in these experiments (n = 25, 3–4 months old) and were allowed to

explore the apparatus for 30 min. The experiment was performed under dim

light during the light cycle.

Two-Stages Open-Field Test

The apparatus consists of a Plexiglas open-field (373 373 37 cm). Mice were

first put in the open field for 5 min (‘‘exploratory stage’’). Immediately after,

mice were returned to their home cages for 2 min. A new object (a cylinder

of 5 cm radius and 10 cm high) was placed in the center of the arena. Mice

were then returned to the open field for an additional 5 min (‘‘novelty stage’’).

The room was illuminated with infrared lights and dim red light.

Elevated Plus Maze and Zero Maze

The plus maze consisted of four elevated arms (40 cm from the floor, 25 cm

long, and 5.2 cm wide) arranged at right angles. Two opposite arms were en-

closed by 15-cm high walls, and the other two were open (no walls). Male con-

trol (n = 8) and Agrp-Trpv1 (n = 11) mice (3–4 months old) were placed on the 5

3 5 cm center section and allowed to explore the apparatus. The zero maze



consisted of an elevated circular platform with two opposite quadrants en-

closed and two open, allowing uninterrupted exploration. The apparatus has

a 50 cm diameter, 5 cm lane width, 15 cm wall height, and 40 cm elevation

(from Stoeling, #68016). Capsaicin (10 mg/ kg, i.p.) was injected immediately

before the experiments. Experiments were performed during the night cycle

of the animals using infrared illumination and dim red light. Mice were recorded

for 10 min and tracked using Any-Maze (Stoelting).

Statistical Analysis

Matlab R2009a, PASW Statistics 18.0, and Prism 6.0 were used to analyze

data and plot figures. When homogeneity was assumed, a parametric analysis

of variance test was used. The student’s t test was used to compare two

groups. One-, two-way, or two-way with repeated measures ANOVA were

used as the other tests unless stated otherwise. When significant, a multiple

comparisons post hoc test was used (Holm-Sidak’s test). When homogeneity

was not assumed, the Kruskal-Wallis nonparametric ANOVA was selected for

multiple statistical comparisons. The Mann-Whitney U test was used to deter-

mine significance between groups. Statistical data are provided in the figures.

p < 0.05 was considered statistically significant.
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